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Summary 
In this paper, we propose a method for reliably extracting modal parameters from concrete bridges, 
which depends on the proper identification of vehicles passing the bridge. We collect data from a 
sensor network installed on a large highway bridge in the Netherlands, called the Hollandse Brug. 
There are three sensor types involved in the network, sensing strain, vibration and temperature. 
Large traffic events, such as trucks crossing the bridge, can be recognized clearly in the strain signal, 
so we use it to identify the exact moments of vehicles passing. At the same time, the measured 
strain is also influenced by other factors, such as traffic jams and temperature changes. We remove 
these factors, which interfere with the proper identification of traffic events, with an improved 
threshold-based classification method, and obtain a number of peaks with the zero-crossing and 
local maximum method. We then divide these peaks into different categories with a supervised 
classification method. The signals produced by the vibration sensors when excited by passing trucks 
is a good  source for analysing structural parameters of the bridge, so we extract the free vibration 
periods of the vibration signals associated with truck events in the strain signals, and subsequently 
conduct modal analysis.  
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1. Introduction 
To acquire data from physical structures such as bridges, there are two general excitation methods 
[10]: the forced and ambient excitation method. With the forced excitation method, the input forces 
are controllable and measurable (such as with an impact hammer or a shaker), so it is easy to obtain 
a clear and interpretable signal. This method is usually adopted in laboratory tests or to obtain short-
term data from a real structure. With the ambient excitation method in contrast, it is hard to measure 
the input forces accurately, because these forces are usually various and uncertain. But this method 
is suitable for long-term data acquisition. In a real-time structural health monitoring system, 
catching long-term informative data helps to diagnose health problems under different conditions. 
The data investigated in this paper is obtained from a 
sensor network installed on a Dutch highway bridge. The 
bridge is called the Hollandse Brug, shown in Fig. 1, 
which is located between the Flevoland and Noord-
Holland provinces in the Netherlands [11, 12]. The sensor 
network was installed on this bridge during a renovation 
launched in 2007, to monitor the condition of the bridge. 
There are three kinds of sensors involved in the sensor 
network: strain, vibration and temperature. Each sensor 
type provides a specific perspective on the dynamics of 
the bridge. Furthermore, there is a weather station and a Fig. 1: The Hollandse Brug 



video-camera to measure the weather and the actual traffic on the bridge. 
The sensor network collects data at a frequency of 100 Hz from the bridge, which not only contains 
vehicles with various weights, lengths, speeds, and directions, but also includes environmental 
factors such as wind, temperature, rain and so on. In most studies, laboratory tests of simple 
structural systems are considered, rather than real structures in their operating environment [10]. 
Although some studies work on real structures, they just consider a short period of data, and assume 
that various environmental conditions remain the same during this period [13].   
In this work, we focus on extracting the free vibration periods of traffic events from our structural 
health monitoring system, which is a critical step to analyse the modal parameters of the bridge. The  
free vibration period means the period after a vehicle has passed, and before a next vehicle appears 
on the bridge. The reason for choosing this period is that the bridge is put in motion by the vehicle, 
but the actual weight does not actually influence the frequency of vibration after the vehicles has 
disappeared, nor do any other vehicles. To extract data that meet such requirements, we need to be 
able to effectively recognise traffic events first. We combine several signal processing and data 
mining techniques to pre-process the baseline drift and identify traffic events in the strain signal, 
and then continue to investigate modal parameters, mainly about the natural frequencies, with the 
corresponding free vibration periods in the vibration signal. 

2. Methods 
In the sensor network, both the strain and vibration signal respond to traffic events. The left two 
pictures of Fig. 2 illustrate one truck event in the time and frequency domain, for either sensor type. 
From this picture, it is easy to see that the truck event in the strain signal is represented as a peak, 
which occurs when the vehicle is actually on the measured span, and disappears rapidly when the 
vehicle passes. The truck event in the vibration signal produces oscillations, which will last for a 
long period after the truck has passed, if it is not disturbed by subsequent vehicles. Based on this 
observation, it is reasonable to select the strain signal to recognize traffic events [7, 8]. To monitor 
and evaluate the health of the bridge, spectral analysis is one of the widely used methods [9, 10]. 
The right two pictures of Fig. 2 (right) illustrate the spectrum of both the strain and vibration signal, 
which are produced by a discrete Fourier transform (DFT). It is clear that the spectrum of the 
vibration signal is more informative than that of the strain signal. So both the strain and vibration 
signals are employed in our experiments: first, we use the strain signal to detect traffic events; then 
conduct spectral analysis on the corresponding vibration signal. 
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Fig. 2: The strain and vibration signal in the time and frequency domain 
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Since there are 91 strain sensors and 34 vibration sensors in our sensor network, which sensors are 
suitable? One simple standard of choosing the strain sensors is if it clearly represents traffic events. 
That is to say, the peak of the selected strain signal should have a strong amplitude. We chose one 
truck event on each side as excitation, looked into the response of all of the strain sensors, and 
finally chose one sensor on each side of the bridge as target. After choosing the strain sensors, the 
selection of vibration sensors becomes easier. We just take the vibration sensors near the selected 
strain sensors as our target vibration sensors. 
The procedure of processing strain and vibration signal is illustrated as Fig. 3. Details of each step 
can be found below. 
                                     
                               
 
 
   
   
   
   
 
 
      
 
 
   
 
 
 
 
Fig. 3: process overview. 

3. Finding the baseline 
Both traffic jams and meteorological factors, notably temperature, can cause baseline drift in the 
strain signal, as shown in the left picture of Fig. 4. The baseline drift is a great obstacle to detect 
traffic peaks. To analyse traffic peaks extracted under varying circumstances, we must get rid of the 
influence of baseline drift first. There are several ways to find and remove a baseline. Schultz et al. 
[1] conducted an excellent literature review and comparison of various baseline-removal methods. 
Most of the methods can be divided into two classes: time-domain methods and frequency-domain 
methods. The noise median method [2], first-derivative method [3], polynomial method [4] and 
threshold-based classification method [5] are carried out in the time domain. In the frequency 
domain, the baseline is usually treated as a low frequency signal, the spectrum of the signal with 
traffic peaks belongs to the medium frequencies, and the spectrum of independent noise may be 
distributed among medium and high frequencies. Filtering out low frequency components in the 
signal spectrum helps to remove the baseline.  
In our experiments, we adopt Dietrich’s method [5]. We first smooth our target strain signal with a 
small moving average filter to get rid of high frequency noise, then calculate the first derivative of 
the smoothed signal. After the first-derivative operation [5], the smoothly varying baseline drift 
disappears, and the mean value x  and sample standard deviation s of the obtained signal are then 

Step 1: Find baseline. The baseline of the strain signal is influenced a 
lot by temperature and traffic jams. To measure the amplitudes of 
peaks correctly, we must find the baseline first. 
Step 2: Remove baseline. Baseline removal is quite straightforward. It 
is obtained by subtracting the baseline from the original strain signal. 
Step 3: Find peaks. Using the zero-crossing and the local maximum 
methods, we succeed to detect a number of peaks, with amplitude, 
duration and area under peak as peak descriptive features. 
Step 4: Label peaks. Based on the video stream, we hand-label each 
peak as either of noise, car on lane 1, truck on lane 1, car on lane 4 or 
truck on lane 4. This will be our training data. 
Step 5: Classify peaks. Based on the obtained peak features and labels, 
we try to find the boundaries between each class, by means of 
classification techniques from the Data Mining field [6]. 
Step 6: Extract single truck events. One whole traffic event is 
composed of the traffic-free period before the traffic peak, the actual 
peak and the traffic-free period after the traffic peak. We should look 
into the traffic events on both lanes to catch all traffic. 
Step 7: Extract free vibration. Free vibration fragments are extracted 
from the vibration signal, which corresponds to the traffic-free period 
directly after a truck-related peak in the strain signal.  
Step 8: Modal analysis. The Discrete Fourier Transform is employed 
to analyze the modes of the free vibration period of the vibration 
signal. 
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determined. By iteratively employing a threshold of sx 3+ , we can classify each point into either of 
two groups: traffic peaks and baseline. Because broad peaks and overlaps exist in our signal, some 
points may be misclassified. To correct this problem, just looking into two neighbours of one target 
point, as Dietrich’s method, is not enough. We select a length of 20 points based on the statistical 
results of broad peaks and overlaps in our strain signal. A natural cubic spline is then fitted to the 
elements in the original strain signal corresponding with that in the baseline group, and an 
approximation of the true baseline is then obtained, shown as the red line in the left picture of Fig. 4. 

Note how the baseline includes temperature related changes to the strain, as well as various levels 
of congestion. The baseline-removed signal is shown as the right picture of Fig. 4. 

4. Finding trucks 
To simplify the problem, we take a dataset of one hour at 3:00 am. The traffic during this time is not 
too heavy, and most of time there is just a single lane on either side in use. After processing the 
selected strain signal with zero crossing and local maximum methods, we obtained a number of 
peaks, with amplitude, duration and area under peak as peak features. 

 
 
We went on to hand-label these detected peaks according to the video taken during this period on 
the bridge. All the peaks were given one of five categories: noise, car on lane 1, truck on lane 1, car 
on lane 4 and truck on lane 4. The scatter plot based on area and amplitude of the strain peaks on 
lane 4 are illustrated as Fig. 5. 
From the labels in Fig. 5, we can see that truck events on either lane are easy to distinguish, but the 
boundaries between car events on opposite lanes and the boundaries between the noise and car 
events on opposite lanes are blurry. When cars on an opposite lane are not heavy enough, they are 

Fig. 4:  The strain signal (left) with baseline drift (the red line) and without baseline drift (right). 

Fig. 5: All peak labels within one hour (left) and detail of the same graph (right). 
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easily mistaken as noise in the strain signal of the current lane. But the vibration sensor is much 
more sensitive to traffic events than the strain sensor, which can catch a small car event on another 
lane. To detect the completely free vibration period according to the strain signal, we must make the 

boundaries as clear as possible.  
 
We processed our labelled peaks with Weka [6], a powerful Data Mining tool. A decision tree was 
produced using the C4.5 algorithm. The result of one decision tree based on the strain peaks on lane 
4 is shown in Fig. 6, which takes area on lane 4, amplitude and label as attributes. 
The training data (derived from the one hour of labelled data) is composed of 7169 instances, of 
which 7137 (99.55%) instances are correctly classified. The confusion matrix is shown as Table 1. 
                    Table 1: The confusion matrix    

The result, with few minor mistakes, is 
already quite good, but can be further 
improved by combining the traffic events on 
the lane of opposite traffic direction. 
We applied this model to a bigger data set 
(the test set), which was obtained by 
selecting one hour per day at 3:00 am for 45 
days. We succeeded to catch 17,220 traffic 
events (of which 852 trucks) on lane 1 and 
13,064 traffic events on lane 4 (of which 768 
trucks). 

5. Modal analysis of free vibration 
We focus on truck events on the bridge, because they can cause obvious oscillations in vibration 
signal, which is useful to detect free vibration. By selecting truck events with at least 20 seconds of 
free vibration, we obtained 72 events on lane 1 and 77 events on lane 4.  
5.1  Modes of the bridge 
As shown in Fig. 2, a number of modes appear in the spectrum of each truck event. To obtain all the 
possible modes of the bridge, we looked into the spectrum of the free vibration period of each 
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Fig. 6: Decision tree of strain peaks on lane 4 



selected truck event. After normalizing the 149 spectra, we get the graph in Fig. 7.  From this, we 
can easily detect several interesting modes. Table 2 provides statistics of these modes. The 
approximate location of each mode is defined according to Fig. 7, and the occurrence of a mode is 
counted if there is at least one peak, whose amplitude is bigger than the average amplitude. The 
third column in Table 2 is calculated by counting what fraction of the 149 spectra actually show a 
peak at the specified location in the spectrum. 
As illustrated below, the amplitude indicates the strength of each mode. Mode 2 (2.69 Hz) and 
mode 3 (2.88 Hz) are the principal modes of the bridge, which occur in every event. Mode 4 and 
mode 5 are also important modes, which have strong amplitude and happen in most events. Mode 1 
and mode 8 have modest occurrence, but their amplitudes are relatively weak. Mode 6 and mode 7 
are so weak that they can be ignored in most cases. 

            Table 2:  Statistics of modes 

 
5.2  The vehicle mass influence 
The main purpose of selecting the free 
vibration period of one traffic event is to get 
rid of the influence of vehicle mass. To 
verify the necessity of this operation, we 
selected one traffic event caused by a truck, 
and applied DFT to the period when the 
truck is on the bridge (T) and the period of 
free vibration (F) respectively.  As illustrated 
in Fig. 8, the modes derived from these two 
periods are different.  
If we simply take the bridge as an Euler-
Bernoulli beam, the vehicle and bridge 
interaction system [14] can be modelled as a 
damped parallel spring mass system, and the 
natural frequencies fn of the system can be 
represented as follows: 

                     m
kfn

π2
1

=  

where k represents for the stiffness of the bridge, m represents the total mass on the bridge. 
For a short period, we can assume the stiffness of the bridge as a constant. The only factor 
influencing the natural frequencies is the mass. When the truck is on the bridge, the mass of the 
bridge increases, and the natural frequencies should decrease. From Fig. 8, we can see that mode 2, 
mode 3, mode 4 and mode 5 indeed show a left shift of the peaks. Furthermore, the spectrum of T 
contains more peaks than that of F, and the low frequency mode 1 of T is stronger than that of F. 

Mode Frequency (Hz) Occurrence 
mode 1 0.73-0.93 71.8% 
mode 2 2.69 100% 
mode 3 2.88 100% 
mode 4 5.61-5.77 97.3% 
mode 5 11.22-11.43 98.7% 
mode 6 15.35-15.55 12.1% 
mode 7 16.55-16.90 10.7% 
mode 8 18.30-18.70 48.3% 

Frequency (Hz) 

Fig. 8:  The spectra with truck and free vibration 

Fig. 7: The vibration modes of the bridge 
 
 



5.3 The evolution of modes over time 
Through the studies in the previous two sections, we already obtain a general picture about the 
bridge modes, and realize that the mass of vehicles has influences on the natural frequencies of the 
bridge. In this section, we will look into the evolution of modes over time. Because of damping, the 
amplitude of oscillations will reduce during the free vibration period of one single traffic event.  
In order to achieve the goal, we chose a specific traffic event with a long free vibration period, and 
employed a sliding window of 10 seconds moving along the free vibration period. In Fig. 9, we 
show four spectra selected at the beginning, in the middle and at the end of the free vibration period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on the observation above, we can draw a conclusion that with time passing by, the high 
frequency modes decay faster than the principal frequency modes (mode 2 and mode 3) , and at last, 
the bridge will vibrate mostly at its principal frequencies. 

6. Outlook on other applications 
The traffic identification method introduced in this paper supports the extraction of modal 
parameters. Because of its generality, this method can easily serve other purposes.  
The method can be used to count traffic on the bridge, providing useful statistics to infrastructure 
managers. Based on these statistics, they can predict the service life of the bridge. 
This method also provides us an accurate way to distinguish traffic types. As illustrated in the Table 
1, among these traffic instances, there are just 19 trucks out of all 7169 instances within the 
investigated hour. For analysis purposes, just collecting truck events saves a huge amount of storing 
space.  
The traffic identification method is also capable of collecting the amplitude and duration of each 
traffic event from the strain signal, which indicates the weight and speed of that vehicle. This 
information can be used to regulate the traffic and can also be used to investigate the influences of 
traffic weight and speed on the modes of the bridge by civil engineers.  
This method can also be used to process signals obtained from other domains. For example, doctors 
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can use it to deal with electrocardiogram (ECG) signals. The baseline noise in ECG may distort the 
s-t segment [15], which is a very important low frequency segment containing information related 
to heart attacks. 

7. Conclusion 
In this paper, we combined signal processing and data mining techniques to extract and classify 
traffic events in an ambient excitation setting. Based on the obtained signals about truck events, we 
succeeded in obtaining 8 modes about our target bridge, and then investigated further the influences 
of vehicle mass on the natural frequencies and the evolution of modes over time. Finally, we 
provide an outlook on other applications of our methods. We believe that our method is useful in 
the management of infrastructure. 
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