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Abstract

Considerable research effort has been devoted to distinguishing changes caused by
the environmental variability from changes due to structural damage, but unfortunately,
investigations studying the operational variability, like traffic events, have been lacking.
In order to obtain signals of high quality, we need to deal with baseline drift problems
mainly caused by temperature changes and traffic jams. In this paper, we present a new
baseline correction method, the most-crossing method, to deal with the baseline of the
strain signals collected from a sensor network installed on a concrete bridge. It is a piece-
wise method based on probability theory. This method needs only a few manual parameter
selection, and can be used automatically for real time baseline correction. We compare
the performance of the most-crossing method with that of the first derivative method and
the iterative polynomial method. The experimental results indicate that the most-crossing
method is superior in dealing with civil engineering signals.
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1 Introduction

With recent advances in monitoring capabilities and hardware solutions, more and more civil
structures are being fitted with a sensor network. Based on the collected data, a number of
Structural Health Monitoring (SHM) methods have been developed to assess the condition of
structures. Most of these methods assume that damage and degradation will affect the physical
properties of the structure, such as their mass and stiffness [23]. These fundamental changes
in the structure will manifest themselves in important parameters of the structure, notably res-
onance frequencies, mode shapes, and modal damping [2, 17]. However, in practical applica-
tions, modal parameters are also subject to varying operational and environmental conditions
such as traffic, humidity, wind [13, 24], solar radiation and, most importantly, temperature
[13, 28, 29, 30].
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Figure 1: The influence of temperature on the strain signal: a linear model between the strain
and temperature signals with a length of 1 day.

Considerable research effort has been devoted to distinguishing changes caused by the envi-
ronmental variability from those due to structural damage or degradation [5, 7, 10, 14, 17, 23],
but unfortunately, investigations studying the operational variability (the effect of varying traf-
fic load on key parameters) have been mostly lacking. Even for environmental influences, for
example the temperature-effect on strain measurements, one can model in detail the response
to temperature changes [22], but not to a sufficient degree for some applications. For reliable
performance of SHM systems, it is of vital importance to filter out the effects of both environ-
mental and operational influences.

The approach we take in this paper is to identify two components of the signal: a slowly
fluctuating baseline due to gradual environmental effects, and a rapidly changing signal su-
perimposed on the baseline that is due to short-term, transient effects, such as traffic. When
considering, for instance, a bridge (Fig. 1), the baseline in the strain signal is strongly depen-
dent on the daily temperature effects, as well as some medium-term events such as traffic jams
(recognizable as temporary jumps in strain). Superimposed on this gradual effect are the peaks
that represent individual vehicle. For various SHM applications, identifying the baseline, or
simply removing it, is a crucial step. For the basic operation of traffic event identification, for
example to compile daily traffic load statistics, recognizing peaks over a baseline is an essential
step. But also for more sophisticated applications, such as extracting modal parameters from
free-vibration periods (the several seconds of unloaded shaking after heavy traffic has passed),
require exact identification of the baseline [21]. Note that especially modern SHM systems
need to deal with the long-term baseline drift, as they tend to monitor structures around the
clock, if not around the calendar, such that baseline-correction will warrant considerable atten-
tion.

Baseline correction A baseline is not a fixed physical phenomenon, but rather something
that depends on the application, and therefore subject to definition. The most common way to



define what constitutes the baseline, and what the signal, is in terms of time scale. Essentially,
any long-term effect belongs to the baseline, and any short-term effect to the signal.

In the example data of Fig. 1, captured on a large Dutch highway bridge, most of the undesir-
able drift in the signal is caused by changes in outside temperature, as indicated by the black
line (scaled in this picture to match the strain signal). Clearly, the strain gauge has captured the
response of the bridge to this temperature change, but the effect of outside temperature (and in
fact all other weather parameters) is non-trivial, such that we cannot simply remove this effect
from the strain signal. Another source of disturbance in the bridge case is the occasional traffic
jam (for example around 4 and 8 PM), which temporarily shifts the signal upwards, in response
to the increased weight on the bridge. Note that traffic jams are often only on one side of the
bridge, such that traffic in the opposite direction still is showing up as peaks in the signal.

For a range of SHM applications, including traffic identification and modal analysis, strain
gauge measurements are a vital resource [19, 21, 27]. However, as Fig. 1 demonstrates, strain
signals are subject to large baseline fluctuations not directly relevant to such applications. In
fact, in most cases the range of fluctuations that can be considered part of the baseline are
often substantially larger than the actual short-term dynamic behaviour that the strain gauges
are designed to capture. For that reason, any non-trivial application will first need to deal with
identification of the baseline, and correction thereof.

Related work Baseline correction techniques have been extensively discussed in the litera-
ture since the 1970’s [15]. Schulze et al. [12] conducted an excellent literature review and
comparison of various baseline-removal methods. Most of the techniques can be divided into
two groups: time-domain methods and frequency-domain methods. In the frequency domain,
the baseline is assumed to be represented by the low frequency components. The peaks of
interest belong to the medium frequency components, and the independent noise is usually
distributed among medium and high frequency components. The wavelet transform [26] and
the Fourier transform [18] are two common methods in this domain. When the spectral com-
ponents are complicated, it is difficult to differentiate the baseline from others with a Fourier
transform. Utilizing the wavelet transform, we have to make great efforts to choose a mother
wavelet, decomposition level and coefficients to remove. Improper selection may lead to base-
line extraction failure.

There are more baseline correction methods developed in the time domain. The median filter
method was first introduced by Friedrichs [16] to deal with the baseline drift in nuclear mag-
netic resonance (NMR) spectra. This method takes the median value in a sliding window as the
baseline. Through properly choosing the window size, the median filter will ignore the peaks
of interest, and just focus on the points in the baseline. As shown in Fig. 2, this method works
well with low signal-to-noise ratio (SNR) spectra with narrow peaks, but cannot handle broad
peaks or high SNR spectra.

The iterative polynomial fitting method [9, 11] assumes that the baseline can be estimated by
a low order polynomial. Under a given polynomial order, a suitable polynomial is obtained by
fitting the original signal with the least squares criterion. The fitted polynomial can be used as
automatic threshold to truncate the original signal. Iterative processes are implemented on the
truncated signal until the criterion of convergence is reached. One drawback of this method is
that the order of the fitted polynomial should be chosen appropriately. If the order is too small,
the baseline cannot be detected correctly. While if the order is too large, the peaks of interest
may be fitted into the baseline, which can also lead to distortions.
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Figure 2: Comparison of several piece-wise baseline correction methods: the length of each
window is 1000 data points (10 seconds); the baseline of each window is assumed to be a
constant value, which is either obtained by calculating the mean value (the dashed line), the
minimum (the dash-dotted line), the median value (the dotted line), or the most-crossing value
(the solid black line); baselines of two adjacent windows are connected using linear interpola-
tion.

Since the slopes, the differences of successive points, of the baseline are generally lower than
those of useful peaks, we can employ the first derivative [18, 25] or the second derivative
method [8] to get rid of the baseline. The first derivative method first uses a moving average
filter to suppress the high-frequency noise in the original signal, and then calculates the deriva-
tive by replacing every point in the signal with the difference between this point and the next
point. The sum of the mean value plus three times the standard deviation is chosen as a thresh-
old to iteratively divide the data points in the signal into two groups: baseline and peaks, until
no data points change groups. According to this method, if one single data point belongs to
the baseline, and both of its neighbours do not, then this point is put back to the baseline. The
advantages of the derivative methods are that they are fast and suitable for automation. But
they can be unstable when peaks are broad or overlap happens.

The topic of baseline correction is a common topic in a number of research fields. Significant
work has been done with nuclear magnetic resonance (NMR) signals as well as for standard-
izing electrocardiogram (ECG) signals, but to the best of our knowledge, it has received little
attention in the civil engineering domain. In this paper, we present a novel baseline correc-
tion method, the most-crossing method, for processing strain signals in civil SHM applications.
The most-crossing method has only a few manual parameters, and can be used automatically
for real-time baseline correction. This method is designed to extract useful peaks from signals
under conditions of high frequency noise and baseline drift. It can deal with peaks of irregular
shapes and random distributions.

In the coming sections, we will first present the procedures of the most-crossing method, and
then apply this method to practical signals and compare its performance with some other pop-
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Figure 3: The kernel smoothed probability density function: the PDF is derived from the same
dataset as Fig. 2; the most-crossing point is the first peak of the kernel smoothed PDF.

ular methods.

2 The Most-Crossing Method

The proposed most-crossing method is a piece-wise method, which employs a sliding window,
like all piece-wise baseline correction methods. The sliding window is an interval in time of
size L that is slid over the time series. The size L is determined by the actual application.
Within a sliding window, we can assume the baseline to be a constant value. What defines a
specific piece-wise method is how this constant value is determined from the data within the
window. There are several common choices for this value, such as using the mean, the median
or the minimum value. These solutions may work well with simple signals, but cannot process
complex signals, like the strain signal shown in Fig. 2. The mean and median value method
weigh each measurement equally, whether part of a peak or not, so the detected baseline is
unstable in heavy traffic. The minimum value method is useful when all the peaks are upward,
but it will cause distortion if the direction of peaks is mixed. Motivated by the disadvantages
of these choices, we introduce the most-crossing method to extract the baseline.

The most-crossing method is based on the probability density function (PDF). The method is a
four-step procedure: baseline recognition, baseline modeling, traffic jam detection and baseline
removal.

2.1 Baseline recognition

We assume that the data points within a sliding window are composed of two kinds of data
points: “noise points” and “peak points”. A peak point is defined as a data point that corre-
sponds to dynamic excitation of the structure, in our case traffic events. The remaining data
points are noise points, which contribute to the baseline of the sliding window. Normally, the
probability distribution of these two kinds of data points are different, so we can use the PDF
for baseline recognition.



35 strain signal with traffic jam | 35/ grainsignal with traffic jam

— baseline without traffic jam detection —baseline with traffic jam detection
30
25

20¢

Amplitude

15}

L . | J 10, | | J
0 2 4 6 0 2 4 6
Time (minute)

Figure 4: The reason for traffic jam detection: the baseline without traffic jam detection (left)
and the baseline with traffic jam detection (right).

The PDF of a continuous random variable is a function that describes the relative likelihood
for this random variable to take on a given value. The PDF is non-negative everywhere, and
its integral over the entire space is equal to one [1]. For discrete variables, such as sensor
readings, the PDF is often estimated by a histogram. To construct a histogram, we first compute
the range for the data set, and then divide it into a number of equal intervals, also known as
‘bins’. The PDF is estimated by counting the number of points that fall within each interval.
Although a histogram is a simple way to estimate the density, it is known to depend a lot on
exact parameter choices and is sensitive to artefacts. To alleviate these problems, we adopt the
more sophisticated kernel density estimation (KDE).

The KDE ( fh(x)) is a non-parametric way to estimate the PDF (f(x)), which can be represented
as Eq. 1.

(M

R 1 &
fh(x)zEZK( h

where K(-) is a kernel function that integrates to 1; h is a smoothing parameter called the
bandwidth; x; is the 7th point in the equally spaced amplitude interval; n is the number of
portions used to divide the amplitude interval.

In the KDE, there are two important parameters: the kernel function and the bandwidth. There
are a range of kernel functions, including Gaussian, uniform, biweight, etc. Due to the conve-
nient mathematical properties, Gaussian kernels are the most often adopted. The bandwidth of
the kernel exhibits a strong influence on the KDE. The optimal bandwidth is the one that min-
imizes the mean integrated squared error (MISE). Under the asymptotic conditions, the MISE
can be approximated as follows [20, 6]:

MISE(h) ~ n—lh / K(x)2dx + h{( / 2K (z)dx)? / £ (x)da (2)

The solution to the differential equation of (2) is the optimal bandwidth, To obtain a concrete
value for the optimal bandwidth, we must replace the unknown density f with an estimate.
The data points contributing to the baseline are dominated by random noise and free vibration

6
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Figure 5: The traffic jam detection: the threshold for triggering the traffic jam detection proce-
dure, which is set as the sum of the mean value (MEAN) and standard deviation (STDEV) of
sliding window slopes.

waves, so we empirically estimate the PDF f with the normal distribution N(yu,c?). The
optimal bandwidth Bopt can be represented as Eq. 3, which is known as Silverman’s rule of
thumb [6]: )

N 70\ 5

Popt = (%) ~ 1.066n 1/ (3)
where ¢ is the standard deviation of the samples.
Based on the optimal bandwidth and the assumed normal distribution, we can obtain a kernel-
smoothed PDF, shown as the left picture in Fig. 3. There are several peaks in the PDF of
the selected signal, and each peak stands for the density distribution of one kind of signal
component. The first peak in the PDF corresponds to values of the baseline (in this case around
31 micro-strain). We take the most-crossing point, the maximum value of the first peak, as the
value of the baseline.

2.2 Baseline modeling

By moving the sliding window point by point, we can obtain the baseline for the whole signal
immediately. But this method is too time consuming and unnecessary in most situations. To
detect the baseline more efficiently, we move the sliding window with a user-defined overlap.
The downside of this process is that it may cause discontinuities. To solve this problem, we
employ linear interpolation to modify the last part of one sliding window baseline and the first
part of the next sliding window baseline. This modeling method makes no assumption about
the shape or functional form of the baseline, but works well even when the SNR is high. The
baseline obtained by such a procedure is called a raw baseline, because traffic jams have not
been considered in this step.
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Figure 6: The traffic jam boundary detection: A and D are middle points of two successive
sliding windows. The bottom-crossing line is a horizontal line across the middle point A. The
top-crossing line is a horizontal line across the middle point D. The turning point B is the last
intersection between the bottom-crossing line and the strain signal. The turning point C is the
first intersection between the top-crossing line and the strain signal.

2.3 Traffic jam detection

When a traffic jam occurs, we expect a baseline that looks as Fig. 4 (right), which catches the
boundaries of traffic jam well. In practice however, the baseline obtained with the procedure
mentioned above often looks like the left figure in Fig. 4, which has problems representing
the boundary well. We solve this boundary problem with the aid of slopes of two successive
windows.

When the traffic on the bridge is normal, the baseline of the strain signal varies only slightly,
and the absolute slope values of sliding windows are also relatively small. However, when a
traffic jam occurs, the baseline of the strain signal will jump to a higher value within a short
time period, shown as the top right picture of Fig. 5. If we plot slope values against time (shown
as the bottom picture of Fig. 5), the traffic jam will cause a slope peak between two sliding
windows. If the absolute value of a peak is above a certain threshold, a traffic jam detection
procedure will be triggered (see Fig. 6). The threshold is depended on the target data set. Here,
for one day’s dataset collected at 100 Hz, we set the threshold as the mean plus one standard
deviation of all slope values.

The boundary problem happens between the points A and D (in Fig. 6), which are middle
points of two successive windows. We draw a bottom-crossing line across the middle point A
= (%4, Ya ), and a top-crossing line across the middle point D = (x4, y4). The traffic jam turning
point B is now defined as (x4, y,), where x;, is the last time between A and D that the signal
crosses the horizontal line defined by y = y,. The baseline between the turning points B and
C is now simply made to follow the actual signal. The baseline between A and B is obtained
with the normal most-crossing method. Point C and the associated baseline between C and D
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Figure 7: The comparison between three different baseline removal methods: the most-crossing
baseline (left) is derived from a sliding window with length of 1 minute (6000 data points): the
first derivative baseline is obtained with a classification threshold of M EAN + 3 - STDEV,
and a false baseline segments threshold of 150 data points; the polynomial baseline is obtained
by a 20-order polynomial fitting.

are produced in analogous fashion.

2.4 Baseline removal

This step is quite straightforward. We just need to subtract the obtained baseline from the
original signal.

3 Experimental Evaluation

Our dataset is generated from a sensor network installed on a Dutch highway bridge, the Hol-
landse Brug, within the Infrawatch project [4, 21, 22]. The sensor network is composed of
145 sensors, including three sensor types: strain, vibration and temperature, and monitoring
dynamic loads on the bridge at a sampling rate of 100 Hz. We apply our most-crossing method
to the strain signal to remove the baseline, and compare its performance to the first derivative
method and the iterative polynomial fitting method. As discussed, strain gauges are not only
sensitive to vehicle, but also to temperature and traffic jams. We employ a dataset with a length
of 24 hours (8.64 million measurements), which is informative enough to include all important
events. The dataset is the same as the one used in the top picture of Fig. 5, in which, the
baseline wander is caused by temperature changes, the small spikes stand for vehicle and the
big jumps are caused by traffic jams.

In Fig. 7, we first present an overview of three different baseline correction methods on the
selected dataset: the black solid line in the left picture shows the baseline obtained with our
most-crossing method, which fits the baseline drifts quite well. The black solid line in the mid-
dle picture stands for the baseline derived from the first derivative method (Dietrich’s method
[25]), in which outliers are detected through checking their adjacent points. This is insufficient
for detecting outliers in our strain signal. The last picture illustrates the baseline obtained with
a 20-order polynomial fitting, which moderately fits the baseline drift caused by temperature
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Figure 8: The most-crossing baseline over a short period signal: the baseline derived from the
most-crossing method (left) and the baseline removed signal (right).

changes, but fails to catch the drift induced by traffic jams. In the coming sections, we will
look into some detailed performances of these methods.

3.1 Baseline removal over a short period signal

For a detailed analysis, we select a dataset of 1 minute (6000 data points) around midnight,
when the traffic is not too heavy. The selected interval includes one truck and several cars.

The most-crossing method Within such a small dataset, we can simply choose the window
size the same as the length of the dataset. The minimum strain is 10.84 micro-strain, the
maximum strain is 19.04. The strain interval [10.84, 19.04] is divided equally into 100 bins,
for estimating the density of strains. The optimal bandwidth Bopt 1s 0.153. Based on Eq. 1,
we obtain an estimator of the signal PDF. The most-crossing value 12.35 is then taken as the
baseline (Fig. 8 (left)). After subtracting the baseline from the signal, we obtained a signal that
preserves all the useful peaks but has a more meaningful centring on the y-axis (Fig. 8 (right)).

The first derivative method We carry out a similar analysis with the first derivative method
introduced by Dietrich et al. [25]. We first apply a Gaussian filter to smooth the original signal,
and then calculate the derivative by replacing every point in the signal with the difference
between this point and the next point. The automatic threshold used to classify data points is
setas MEAN + 3 - STDEV . For the outlier detection step, by just checking two neighbours
of a data point, we obtain the baseline shown in the left picture of Fig. 9, from which we can
see that most of useful peaks are assigned to the baseline. We improve this result by correcting
short noise segments into peak segments. By changing noise segments of less than 150 data
points into peak segments, we obtain an improved baseline, shown as the solid black line in the
right picture of Fig. 9. The improved baseline is good for processing signals with sharp peaks,
but still performs moderately with broad and overlapping peaks.

10
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Figure 9: The first derivative baseline over a short period signal: the baseline obtained by just
checking adjacent points (left) and the baseline obtained by correcting noise segments whose
lengths are less than 150 data points.

The iterative polynomial method We also apply the improved iterative polynomial fitting
method [11] to the same dataset. We assume the initial fitting result equals to the original signal,
and employ a low order (3) polynomial (left picture of Fig. 10) to fit the original signal with
the least-squares criterion. If the elements in the original signal are bigger than the elements in
the obtained fitting result, then we replace them with the latter. The original signal is truncated
iteratively until the criterion of convergence, shown as Equation 4, is reached. We repeat the
same procedure with a 20-order polynomial. The fitting result is shown in the right picture of
Fig. 10.

1Bk — by |
p=1——"

< 0.001 4)
br—1

where, by, and by,_; are polynomial fitting results at the kth and (k — 1)th iteration, respectively.

At iteration 0, b is the original signal .

For a given order, the iterative polynomial method aims to generate an optimal fitting with the

least-squares criterion, which considers all the data points in the dataset equally. From the

results in Fig. 10, we can clearly see that neither a low nor a high-order polynomial can fit the

baseline well.

3.2 Baseline elimination for traffic jam signal

In this section, we will consider the baseline elimination during traffic jams. Traffic jams, which
may last from a few minutes to a couple of hours, typically happen during rush hour. In most
cases, traffic jams happen just on one side of the bridge, while on the other side of the bridge,
traffic flow is normal. So the sensors on the bridge may collect information about traffic jams
and traffic events at the same time. The dataset for this section, which covers 1 hour (360000
data points), contains a traffic jam of about 10 minutes on one side of the bridge.

11
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Figure 10: The polynomial baseline over a short period signal: the baseline derived from a
3-order polynomial fitting (left) and the baseline derived from a 20-order polynomial fitting
(right).

The most-crossing method We employ a sliding window to move along the selected dataset.
The window size is also set as 1 minute (6000 data points), with no overlap between successive
windows. Without traffic jam detection, false traffic peaks (boundary problems) will occur
around the boundaries of the traffic jam, shown as the left picture of Fig. 11. By empirically
setting the traffic jam threshold as M EAN + ST DEV of all slope values within this period as
described in Section 2, we solved the boundary problem (as the right picture of Fig. 11).

The first derivative method We process the traffic jam signal with the same first derivative
method mentioned above. The automatic threshold used to classify data points is also set as
MEAN + 3-STDEV. We first detect the baseline with Dietrich’s method, which eliminates
outliers through just checking two neighbors of a data point. The obtained result, shown as the
left picture of Fig. 12, can catch the traffic jam moderately, but it still suffers from broad peak
and traffic jam boundary problems. We then improve the result by correcting the false noise
segments (the lengths of which e less than 150 data points). The improved result, shown as
the right picture of Fig. 12, can substantially reduce the problems mentioned above, but cannot
overcome them completely.

The iterative polynomial method For the iterative polynomial method, the most critical
parameter is the order of the polynomial. The higher order we use, the more detail can be
caught. To show two extremes, we employ a low order (1 degree) polynomial and a high order
(25 degrees) polynomial to iteratively fit the traffic jam signal. As shown in Fig. 13, the low
order polynomial can catch part of the baseline of the normal traffic periods, but fails to detect
the traffic jam, and the high order polynomial cannot deal with the traffic jam either.

12
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Figure 11: The most-crossing baseline for traffic jam signal: the traffic jam baseline before
solving the boundary problem (left), and the baseline after traffic jam detection (right).

4 Real-world application: the Infrawatch project

In Section 3, we have briefly introduced the Infrawatch project and utilized its datasets to
evaluate the accuracy of the most-crossing method. In this section, we describe an application
of the method in the project.

Traffic event statistics Traffic event statistics on a bridge are of vital importance in assisting
bridge managers to evaluate the condition of the bridge and implement a maintenance plan.
The top picture of Fig. 14 shows the strain signal of 7 days, during the period from Monday
Dec 8, 2008 to Sunday Dec 14, 2008, based on which we will estimate the traffic load for this
period. A dataset of 7 days sampling at 100 Hz means huge computational burden. To make it
work on our PC, we down sample the dataset to 1 Hz, which won’t affect the statistical result,
because traffic events are low frequency components of the strain signal (below 1 Hz).

Traffic events appear as peaks in the strain signal, with varying amplitudes and durations (de-
pending on weight and speed of the vehicles). To extract these features, we need to get rid of
the moving baseline first. Since the signal is sampled at 1 Hz, we employ a sliding window
of length 60 data points (1 minute). The traffic jam trigger threshold is set as the sum of the
mean value and 3 times the standard deviation of slope values, as shown in the middle picture
of Fig. 14. When the absolute slope value of two sliding windows is above the threshold, the
traffic jam detection procedure is fired, and the traffic jam is recognized as part of the baseline.
The baseline-free signal in the bottom picture of Fig. 14 is obtained by subtracting the baseline
in the top picture from the original strain signal. With the traffic event identification method
presented in our previous work [21], we obtain 108,161 peaks from the baseline-free signal,
with location, amplitude and duration. We assume that, based on the peak amplitude, these
peaks can be divided into 4 categories: noise, car, van and truck, and the last three categories
are interesting for us, which are mentioned as useful peaks. The clustering method employed
in this work is the k-means method [3], which aims to divide all the obtained peaks into k
clusters. The k-means uses squared Euclidean distances, and the distance between two objects
within the same cluster is smaller than that of two objects in different clusters. By setting £ as
4, 25,602 peaks are classified as useful peaks, and the rest 82,559 peaks are classified as noise.

13
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Figure 12: The first derivative baseline for a traffic jam signal: the first derivative-based baseline
obtained by just checking adjacent points (left) and the baseline obtained by correcting noise
segments whose lengths are less than 150 data points (right).

The detailed information of useful peaks is listed below.

Day Car Van Truck Total
Monday 2647 987 265 3899
Tuesday 2611 1023 324 3958
Wednesday 2610 1021 302 3933
Thursday 2725 1073 292 4090
Friday 2742 1088 290 4120
Saturday 2750 303 24 3077
Sunday 2389 124 12 2525

Based on the vehicle statistics results, we learn that the number of vehicles on weekdays is
considerably more than that of weekends; within one day, cars form the majority of traffic
events. During the weekend, the number of vans and trucks is reduced sharply, while the
number of cars is only slightly reduced.

As shown in the table below, we recognized 15 traffic jams, the durations of which range from
1.19 minutes to 129.40 minutes. All the traffic jams occur on weekdays, and weekends are
traffic jam-free. Most traffic jams happen during rush hour of the workday, but there are also
exceptions, like the 9th traffic jam, which lasted nearly two hours around midnight. Through
checking the video record, we found out that the bridge was under substantial maintenance
during this period.

14
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Figure 13: The polynomial baseline for traffic jam signal: the baseline derived from the first
degree polynomial (left) and the 25 degrees polynomial (right).

Traffic jam  Start Duration Day
(Hour) (Minute)

1 10:12 74 Monday

2 9:32 1.2 Tuesday

3 10:19 199 Tuesday

4 9:31 2.2 Wednesday
5 9:55 1.4 Wednesday
6 10:07 1.8 Wednesday
7 10:27 1.9 Wednesday
8 10:48  72.1 Wednesday
9 22:16  113.2 Wednesday/Thursday
10 3:18 13.6 Thursday
11 8:31 4.8 Thursday
12 9:31 14.3 Thursday
13 21:56 224 Thursday
14 6:45 129.4 Friday

15 10:22 2.7 Friday

5 Conclusion

In this work, we proposed the most-crossing method as a method for detecting the baseline
in sensor data from civil engineering applications. The most-crossing method combines the
notion of a sliding window with the probability density function. Within one window, the ran-
dom noise and traffic events cannot be treated equally, because just the former contributes to
the baseline. Traditional baseline correction methods (like the polynomial or first derivative
method) consider all the data points in the window equally, so they are unsuitable for base-
line correction in the civil engineering domain. The most-crossing method is also capable of
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Figure 14: Traffic event statistics of 7 days (During the period between Dec 8, 2008 and Dec
14, 2008): top picture: the strain signal of 7 days at 1 Hz and its baseline obtained with the most
crossing method; middle picture: the slope values of adjacent sliding windows (with length 60

data points) and the threshold lines for triggering traffic jams, which are set as the mean plus 3
times standard deviation; bottom picture: the strain signal without baseline drift.

processing traffic events of bigger scales, like traffic jams, which is of vital importance for
engineers or bridge owners to study the dynamic loads on the bridge. We have evaluated the
most-crossing method on datasets of multiple scales, and compared its performance with exist-
ing popular baseline correction methods. The results indicate that the most-crossing method is
superior in dealing with baselines of strain signals in the civil engineering domain. At the end
of the work, we apply the most-crossing method to a big data set of one week, and succeed in
obtaining the traffic events distribution during that period.
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