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The Why

• A lot of ML problems concern really large datasets

• Huge graphs: internet, social networks, protein interactions

• Sensor data (cfr. Kristian)

• InfraWatch: 5GB/day, 2TB/year, 8TB/4years   @50MB/s -> 2 days

• Data is just getting bigger...



The What

• Map-Reduce (Hadoop) -> I/O bound processes

• Distributed computing -> CPU bound processes



Map-reduce: distribute I/O over many nodes
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data
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Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data
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Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data
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Map-reduce: Intuition

One apple

Thanks to Saliya Ekanayake



Map-reduce: Intuition

One apple

A fruit basket: more knives!

many mappers 
(people with knifes)

1 reducer 
(person with blender)

Thanks to Saliya Ekanayake
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Map-reduce: Intuition

A fruit container: more blenders too!

<a,    > <o,    > <p,    > , ...

<a’,     ><o’,     ><p’,     >, ...

Map input:

Map output:

Shuffle
Reduce input:

<a’,     ,     ,     ,     ,     >

Reduce output:

an academic analogy: 
papers, reviewers, editors



Example: inverted indexing (e.g. webpages)



Example: inverted indexing (e.g. webpages)
• Input: documents/webpages

• Doc 1: “Why did the chicken cross the road?”
• Doc 2: “The chicken and egg problem”
• Doc 3: “Kentucky Fried Chicken”

• Output
• Index of words:

• The word “the” occurs twice in Doc 1 (positions 3 and 6), once in 
Doc 2 (position 1)
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Example: inverted indexing (e.g. webpages)



Example: inverted indexing (e.g. webpages)



Example: inverted indexing (e.g. webpages)

Simply write mapper and reducer method, often few lines of code



Map-reduce on time series data



A simple operation: aggregation

2008-10-24 06:15:04.559 min     -524.0103
2008-10-24 06:15:04.559 max     38271.21
2008-10-24 06:15:04.559 avg     447.37795925930226
2008-10-24 06:15:04.570 min     -522.7882
2008-10-24 06:15:04.570 max     37399.26
2008-10-24 06:15:04.570 avg     437.1266600847675

2008-10-24 06:15:04.559,  -6.293695,  -1.1263204,  2.985364,  43449.957,  2.3577218,  38271.21
2008-10-24 06:15:04.570,  -6.16952,    -1.3805857,  2.6128333,43449.957,  2.4848552,  37399.26
2008-10-24 06:15:04.580,  -5.711255,  -0.8897944,  3.139107,  43449.957,  2.1744132,  38281.0



A simple operation: aggregation

• Input: Table with sensors in columns and timestamps in rows

• Desired output: Aggregated measures per timestamp

2008-10-24 06:15:04.559 min     -524.0103
2008-10-24 06:15:04.559 max     38271.21
2008-10-24 06:15:04.559 avg     447.37795925930226
2008-10-24 06:15:04.570 min     -522.7882
2008-10-24 06:15:04.570 max     37399.26
2008-10-24 06:15:04.570 avg     437.1266600847675

2008-10-24 06:15:04.559,  -6.293695,  -1.1263204,  2.985364,  43449.957,  2.3577218,  38271.21
2008-10-24 06:15:04.570,  -6.16952,    -1.3805857,  2.6128333,43449.957,  2.4848552,  37399.26
2008-10-24 06:15:04.580,  -5.711255,  -0.8897944,  3.139107,  43449.957,  2.1744132,  38281.0



Map-reduce on time series data
  public void map(LongWritable key, Text value, Context context) {
               String values[] = value.toString().split("\t");
               Text time = new Text(values[0]);
               for(int i = 1; i <= nrStressSensors; i++)
                    context.write(time, new Text(values[i]));
}

    public void reduce(Text key, Iterable<Text> values, Context context) {
               //init; sum, min, max, count = 0
               Double d;
               for (Text v : values) {
                       d = Double.valueOf(v.toString());
                   sum += d;
                   min = Math.min(min, d);
                   max = Math.max(max, d);
                   count++;
               }
               context.write(new Text(key+" min"), new Text(Double.toString((min))));
               context.write(new Text(key+" max"), new Text(Double.toString((max))));
               context.write(new Text(key+" avg"), new Text(Double.toString((sum/count))));
}
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  public void map(LongWritable key, Text value, Context context) {
               String values[] = value.toString().split("\t");
               Text time = new Text(values[0]);
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Map-reduce on time series data
  public void map(LongWritable key, Text value, Context context) {
               String values[] = value.toString().split("\t");
               Text time = new Text(values[0]);
               for(int i = 1; i <= nrStressSensors; i++)
                    context.write(time, new Text(values[i]));
}

    public void reduce(Text key, Iterable<Text> values, Context context) {
               //init; sum, min, max, count = 0
               Double d;
               for (Text v : values) {
                       d = Double.valueOf(v.toString());
                   sum += d;
                   min = Math.min(min, d);
                   max = Math.max(max, d);
                   count++;
               }
               context.write(new Text(key+" min"), new Text(Double.toString((min))));
               context.write(new Text(key+" max"), new Text(Double.toString((max))));
               context.write(new Text(key+" avg"), new Text(Double.toString((sum/count))));
}

MAP data to 
<timestamp,value> 

Shuffle/sort 
per timestamp

REDUCE data per 
timestamp to 
aggregates 



Shuffling



Map-reduce on time series data



Map-reduce on time series data
Min

Avg

Max



ML with map-reduce
• What part is I/O intensive (related to data points), and can be parallelized?

• E.g. k-Means?



ML with map-reduce k-Means Clustering Implementation

Iterative MapReduce

Centers Version i

Centers Version i + 1

Points

Mapper

Points

Mapper

Reducer Reducer

Find Nearest Center

Key is Center, Value is Movie

Average Ratings

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 27 / 31

• What part is I/O intensive (related to data points), and can be parallelized?
• E.g. k-Means?

• Calculation of distance function!
• Split data in chunks
• Choose initial centers
• MAP: calculate distances to all 

centers: <point,[distances]>
• REDUCE: calculate new centers
• Repeat

• Others: SVM, NB, NN, LR,...
• Chu et al. Map-Reduce for ML on 

Multicore, NIPS ’06



Map-reduce on graph data

• Find nearest feature on a graph

? nearest      within distance d?

Input
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Map-reduce on graph data

• Find nearest feature on a graph
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Input
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Sort
by     id

Reduce
<     ,[{    ,distance},
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Map-reduce on graph data

• Find nearest feature on a graph

Map
∀   , search graph
<     ,{    ,distance} >

Input
graph 
(node,label)

Shuffle/
Sort
by     id

Reduce
<     ,[{    ,distance},
 {    ,distance}] >
-> min()

Output
<     ,    >
<     ,    > 
marked graph

Be smart about mapping: load nearby nodes on same 
computing node: choose a good representation
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The How?

Hadoop: The Definitive Guide 
(Tom White, Yahoo!) 

Amazon Elastic Cloud (EC2)
Amazon Simple Storage Service (S3)
$0.085/CPU hour, $0.1/GBmonth

or... your university’s HPC center
or... install your own cluster

Hadoop-based ML library 
Classification: LR, NB, SVM*, NN*, RF
Clustering: kMeans, canopy, EM, spectral
Regression: LWLR*
Pattern mining: Top-k FPGrowth
Dim. Reduction, Coll. Filtering
(*under development)



Part II: Grid computing (CPU bound)
• Disambiguation:

• Supercomputer (shared memory)

• CPU + memory bound, you’re rich

• Identical nodes

• Cluster computing

• Parallellizable over many nodes (MPI), you’re rich/patient

• Similar nodes

• Grid computing

• Parallellizable over few nodes or embarrassingly parallel

• Very heterogenous nodes, but loads of `free’ computing power
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Grid computing

• Grid certificate, you’ll be part of a Virtual Organization

• (Complex) middleware commands to move data/jobs to computing nodes:
• Submit job: glite-wms-job-submit -d $USER -o <jobId> <jdl_file>.jdl

• Job status: glite-wms-job-status -i <jobID> 

• Copy output to dir: glite-wms-job-output --dir <dirname> -i <jobID>

• Show storage elements: lcg-infosites --vo ncf se

• ls: lfc-ls -l $LFC_HOME/joaquin

• Upload file (copy-register): lcg-cr --vo ncf -d srm://srm.grid.sara.nl:8443/pnfs/
grid.sara.nl/data/ncf/joaquin/<remotename> -l lfn:/grid/ncf/joaquin/<remotename> 
"file://$PWD/<localname>"

• Retrieve file from SE: lcg-cp --vo ncf lfn:/grid/ncf/joaquin/<remotename> file://$PWD/
<localname>



Token pool servers



Video
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