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ABSTRACT

The behavior of many complex physical systems is af-
fected by a variety of phenomena occurring at different
temporal scales. Time series data produced by measuring
properties of such systems often mirrors this fact by ap-
pearing as a composition of signals across different time
scales. When the final goal of the analysis is to model the
individual phenomena affecting a system, it is crucial to
be able to recognize the right temporal scales and to sepa-
rate the individual components of the data. We introduce
a solution to this challenge based on a combination of
the Minimum Description Length (MDL) principle, fea-
ture selection strategies, and convolution techniques from
the signal processing field. As a result, we show that our
algorithm produces a good decomposition of a given time
series and, as a side effect, builds a compact representa-
tion of its identified components.

1. INTRODUCTION

Our work [5] is concerned with the analysis of sensor data.
When monitoring complex physical systems over time,
one often finds multiple phenomena in the data that work
on different time scales. If one is interested in analyzing
and modeling these individual phenomena, it is crucial to
recognize these different scales and separate the data into
its underlying components. Here, we present a method for
extracting the time scales of various phenomena present in
large time series.

The need for analyzing time series data at multiple
time scales is nicely demonstrated by a large monitoring
project in the Netherlands, called InfraWatch [4]. In this
project, we employ a range of sensors to measure the dy-
namic response of a large Dutch highway bridge to vary-
ing traffic and weather conditions. When viewing this data
(see Fig. 1, upper plot), one can easily distinguish various
transient events in the signal that occur on different time
scales. Most notable are the gradual change in strain over
the course of the day (as a function of the outside temper-
ature, which influences stiffness parameters of the con-
crete), a prolonged increase in strain caused by rush hour
traffic congestion, and individual bumps in the signal due
to cars and trucks traveling over the bridge. In order to
understand the various changes in the sensor signal, one
would benefit substantially from separating out the events
at various scales. The main goal of the work described

here is to do just that: we consider the temporal data as a
series of superimposed effects at different time scales, es-
tablish at which scales events most often occur, and from
this we extract the underlying signal components.

We approach the scale selection problem from a Min-
imum Description Length [1] (MDL) perspective. The
motivation for this is that we need a framework in which
we can deal with a wide variety of representations for
scale components. Our main assumption is that separat-
ing the original signal into components at different time
scales will simplify the shape of the individual compo-
nents, making it easier to model them separately. Our re-
sults show that, indeed, these multiple models outperform
(in terms of MDL score) a single model derived from the
original signal. While introducing multiple models incurs
the penalty of having to describe them, there are much
fewer ‘exceptions’ to be described compared to the single
model, yielding a lower overall description length.

The analysis of time scales in time series data is of-
ten approached from a scale-space perspective, which in-
volves convolution of the original signal with Gaussian
kernels of increasing size [6] to remove information at
smaller scales. By subtracting carefully selected com-
ponents of the scale-space, we can effectively cut up the
scale space into k ranges. In other words, signal process-
ing offers methods for producing a large collection of de-
rived features, and the challenge we face in this paper is
how to select a subset of k features, such that the original
signal is decomposed into a set of meaningful components
at different scales.

Our approach applies the MDL philosophy to vari-
ous aspects of modeling: choosing the appropriate scales
at which to model the components, determining the op-
timal number of components (while avoiding overfitting
on overly specific details of the data), and deciding which
class of models to apply to each individual component.
For this last decision, we propose two classes of models
representing the components respectively on the basis of
a discretization and a segmentation scheme. For this last
scheme, we allow three levels of complexity to approx-
imate the segments: piecewise constant approximations,
piecewise linear approximations, as well as quadratic ones.
These options result in different trade-offs between model
cost and accuracy, depending on the type of signal we are
dealing with.



A useful side product of our approach is that it iden-
tifies a concise representation of the original signal. This
representation is useful in itself: queries run on the de-
composed signal may be answered more quickly than when
run on the original data. Furthermore, the parameters of
the encoding may indicate useful properties of the data as
well.

2. PRELIMINARIES

We deal with finite sequences of numerical measurements
(samples), collected by observing some property of a sys-
tem with a sensor, and represented in the form of time
series as defined below.

Definition 1. A time series of length n is a finite sequence
of values x = x[1], . . . , x[n] of finite precision.1 A subse-
quence x[a : b] of x is defined as follows:

x[a : b] = (x[a], x[a+ 1], . . . , x[b]), a < b

We also assume that all the considered time series have no
missing values and that their sampling rate is constant.

2.1. The Scale-Space Image

The scale-space image [6] is a scale parametrization tech-
nique for one-dimensional signals2 based on the operation
of convolution.

Definition 2. Given a signal x of length n and a response
function (kernel) h of length m, the result of the convolu-
tion x ∗ h is the signal y of length n, defined as:

y[t] =

m/2∑
j=−m/2+1

x[t− j] h[j]

In this paper, h is a Gaussian kernel with mean µ = 0,
standard deviation σ, area under the curve equal to 1, dis-
cretized into m values.3

Given a signal x, the family of σ-smoothed signals Φx
over scale parameter σ is defined as follows:

Φx(σ) = x ∗ gσ , σ > 0

where gσ is a Gaussian kernel having standard deviation
σ, and Φx(0) = x.

The signals in Φx define a surface in the time-scale
plane (t, σ) known in the literature as the scale-space im-
age [3, 6]. This visualization gives a complete description
of the scale properties of a signal in terms of Gaussian
smoothing. For practical purposes, the scale-space image
is quantized across the scale dimension by computing the
convolutions only for a finite number of scale parameters.
More formally, for a given signal x, we fix a set of scale
parameters S = {2i | 0 ≤ i ≤ σmax ∧ i ∈ N} and we
compute Φx(σ) only for σ ∈ S where σmax is such that
Φx(σ) is approximately equal to the mean signal of x.

132-bit floating point values in our experiments.
2From now on, we will use the term signal and time series inter-

changeably.
3To capture almost all non-zero values, we define m = b6σc.

2.2. Scale-Space Decomposition

We define a decomposition scheme of a signal x by con-
sidering adjacent ranges of scales of the signal scale-space
image as below.

Definition 3. Given a signal x and a set of k − 1 scale
parameters C = {σ1, . . . , σk−1} (called the cut-point
set) such that σ1 < ... < σk−1, the scale decomposition
of x is given by the set of component signals Dx(C) =
{x1, ..., xk}, defined as follows:

xi =

 Φx(0)− Φx(σ1) if i = 1
Φx(σi−1)− Φx(σi) if 1 < i < k
Φx(σk−1) if i = k

Note that for k components we require k − 1 cut-points.

3. MDL SCALE DECOMPOSITION SELECTION

Given an input signal x, the main computational challenge
we face is twofold:

• find a good subset of cut-points C such that the re-
sulting k components of the decomposition Dx(C)
optimally capture the effect of transient events at
different scales,

• select a representation for each component, accord-
ing to its inherent complexity.

We propose to use the Minimum Description Length (MDL)
principle to approach this challenge. The two-part MDL
principle states that the best model M to describe the sig-
nal x is the one that minimizes the sum of the description
lengths L(M) + L(x |M).
The possible models depend on the scale decomposition
Dx(C) considered4 and on the representations used for
its individual components. An ideal set of representations
would adapt to the specific features of every single com-
ponent, resulting in a concise summarization of the de-
composition and, thus, of the signal. In order to apply the
MDL principle, we need to define a model MDx(C) for a
given scale decompositionDx(C) and, consequently, how
to compute both L(MDx(C)) and L(x |MDx(C)). The lat-
ter term is the length in bits of the information lost by the
model, i.e., the residual signal x−MDx(C).

Note that, in order to employ MDL, we discretize the
input signal x. Below, we introduce the proposed repre-
sentation schemes for the components. We also define the
bit complexity of the residual and the model selection pro-
cedure.

3.1. Component Representation Schemes

Within our general framework, many different approaches
could be used for representing the components of a de-
composition. In the next paragraphs we introduce two
such methods.

4Including the decomposition formed by zero cut-points (C = ∅),
i.e., the signal itself.



3.1.1. Discretization-based representation

As a first representation, we propose to consider more
coarse-grained discretizations of the original range of val-
ues. By doing so, similar values will be grouped together
in the same bin. The resulting sequence of integers is com-
pacted further by performing run-length encoding, result-
ing in a string of (v, l) pairs, where l represents the num-
ber of times value v is repeated consecutively. This string
is finally encoded using a Shannon-Fano or Huffman code
(see Section 3.2).

3.1.2. Segmentation-based representation

The main assumption on which we base this method is
that a clear transient event can be accurately represented
by a simple function, such as a polynomial of a bounded
degree. Hence, if a signal contains a number of clear tran-
sient events, it should be possible to accurately represent
this signal with a number of segments, each of which rep-
resented by a simple function.

Given a component xi of length n, let

z(xi) = {t1, t2, ..., tm}, 1 < ti ≤ n

be a set of indexes of the segment boundaries.
Let fit(xi[a : b], di) be the approximation of xi[a : b]

obtained by fitting a polynomial of degree di. Then, we
represent each component xi with the approximation x̂i,
such that:

x̂i[0 : z1] = fit(xi[0 : z1], di)
x̂i[zi : zi+1] = fit(xi[zi : zi+1], di), 1 ≤ i < m
x̂i[zm : n] = fit(xi[zm : n], di)

Note that approximation x̂i is quantized again by reapply-
ing the function Q to each of its values.

For a given k-component scale decomposition Dx(C)
and a fixed polynomial degree for each of its components,
we calculate the complexity in bits of the model MDx(C),
based on this representation scheme, as follows. Each ap-
proximated component x̂i consists of |z(xi)|+1 segments.
For each segment, we need to represent its length and the
di + 1 coefficients of the fitted polynomial. The length lsi
of the longest segment in x̂i is given by

lsi = max(z1 ∪ {zi+1 − zi | 0 < i ≤ m})

We therefore use log2(lsi) bits to represent the segment
lengths, while for the coefficients of the polynomials we
employ floating point numbers of fixed5 bit complexity
c. The MDL model cost is thus defined, omitting minor
terms, as:

L(MDx(C)) =

k∑
i=1

(|z(xi)|+ 1) (dlog2(lsi)e+ c (di + 1))

So far we assumed to have a set of boundaries z(xi), but
we did not specify how to compute them. A desirable

5In our experiments c = 32.

property for our segmentation would be that a segmen-
tation at a coarser scale does not contain more segments
than a segmentation at a finer scale.

The scale space theory assures that there are fewer
zero-crossing of the derivatives of a signal at coarser scales [6].
In our segmentation we use the zero-crossings of the first
and second derivatives.

3.2. Residual Encoding

Given a model MDx(C), its residual r = x −
∑k
i=1 x̂i,

computed over the component approximations, represents
the information of x not captured by the model. Having al-
ready defined the model cost for the two proposed encod-
ing schemes, we only still need to define L(x | MDx(C)),
i.e., a bit complexity L(r) for the residual r.

Here, we exploit the fact that we operate in a quantized
space; we encode each bin in the quantized space with
a code that uses approximately − log(P (x)) bits, where
P (x) is the frequency of the xth bin in our data. The main
justification for this encoding is that we expect that the er-
rors are normally distributed around 0. Hence, the bins
in the discretization that reflect a low error will have the
highest frequency of occurrences; we will give these the
shortest codes. In practice, ignoring small details, such
codes can be obtained by means of Shannon-Fano cod-
ing or Huffman coding; as Hu et al. [2] we use Huffman
coding in our experiments.

3.3. Model Selection

We can now define the MDL score that we are optimizing
as follows:

Definition 4. Given a model MDx(C), its MDL score is
defined as:

L(MDx(C)) + L(r)

In the case of discretization-based encoding, the MDL
score is affected by the cardinality used to encode each
component. In the case of segmentation-based encoding
the MDL score depends on the boundaries of the segments
and the degrees of the polynomials in the representation.
In both cases, also the cut-points of the considered decom-
position affect the final score.

The simplest way to find the model that minimizes this
score is to enumerate, encode and compute the MDL score
for every possible scale-space decomposition and all pos-
sible encoding parameters. This brute-force approach re-
sults to be feasible in practice.

4. EXPERIMENTS

In this section, we experimentally evaluate our method ac-
tual sensor data from a real-world application. For a com-
plete evaluation of the method, including a more system-
atic one over artificial data, please refer to [5].

We consider the strain measurements produced by a
sensor attached to a large highway bridge in the Nether-
lands. The considered time series consists of 24 hours
of strain measurements sampled at 1 Hz (totaling 86, 400
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Figure 1: Signal (top) and top-ranked scale decomposition for the InfraWatch data.

data points). A plot of the data is shown in Figure 1 (top-
most plot). We evaluated all the possible decompositions
up to three components (two cut-points) allowing both the
representation schemes we introduced. In the case of the
discretization-based representations, we limit the possible
cardinalities to 4, 16 and 64. The top-ranked decompo-
sition results in 3 components as shown in the last three
plots in Figure 1. The selected cut-points appear at scales
26 = 64 and 211 = 2048. All three components are repre-
sented with the discretization-based scheme, with a cardi-
nality of respectively 4, 16, and 16 symbols. The decom-
position has an MDL-score of 344, 276, where L(M) =
19, 457 and L(D | M) = 324, 818. The found com-
ponents accurately correspond to physical events on the
bridge. The first component, covering scales lower than
26, reflects the short-term influence caused by passing ve-
hicles and represented as peaks in the signal. Note that
the cardinality selected for this component is the lowest
admissible in our setting (4). This is reasonable consid-
ering that the relatively simple dynamic behavior occur-
ring at these scales, mostly the presence or not of a peak
over a flat baseline, can be cheaply described with 4 or
fewer states without incurring a too large error. The mid-
dle component, covering scales between 26 and 211, re-
flects the medium-term effects caused by traffic jams. The
first component is slightly influenced by the second one,
especially at the start and ending points of a traffic jam.
Finally, the third component captures all the scales greater
than 211, here representing the effect of temperature dur-
ing a whole day. To sum up, the top-ranked decomposi-
tion successfully reflects the real physical phenomena af-
fecting the data. The decompositions with rank 8 or less
all present similar configurations of cut-points and cardi-
nalities, resulting in comparable components where the
conclusions above still hold. The first 2-component de-
composition appears at rank 10 with the cut-point placed
at scale 26, which separates the short-term peaks from all
the rest of the signal (traffic jams and baseline mixed to-
gether). These facts make the result pretty stable as most
of the good decompositions are ranked first.

5. CONCLUSIONS AND FUTURE WORK

We introduced a novel methodology to discover the fun-
damental scale components in a time series in an unsuper-
vised manner. The methodology is based on building can-
didate scale decompositions, defined over the scale-space
image [6] of the original time series, with an MDL-based
selection procedure aimed at choosing the optimal one.

As shown, our approach identifies the relevant scale
components in a relevant real-world application, giving
meaningful insights about the data.

Future work will experiment with diverse representa-
tion schemes and hybrid approaches (such as using combi-
nations of segmentation, discretization and Fourier-based
encodings).
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